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Abstract
Deep learning (DL) has become increasingly central to science, primarily due to its
capacity to quickly, efficiently, and accurately predict and classify phenomena of sci-
entific interest. This paper seeks to understand the principles that underwrite scientists’
epistemic entitlement to rely on DL in the first place and argues that these principles
are philosophically novel. The question of this paper is not whether scientists can be
justified in trusting in the reliability of DL.While today’s artificial intelligence exhibits
characteristics common to both scientific instruments and scientific experts, this paper
argues that the familiar epistemic categories that justify belief in the reliability of
instruments and experts are distinct, and that belief in the reliability of DL cannot be
reduced to either. Understanding what can justify belief in AI reliability represents an
occasion and opportunity for exciting, new philosophy of science.
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1 Introduction

While contemporary deep learning (DL) systems display superhuman capacities for
prediction and classification, their opacity (Creel, 2020; Zerilli, 2022) is thought to
limit our ability to understand why such systems make the predictions and classifica-
tions they do. This limitation is of particular concern in high-stakes decision-making
settings such as medical diagnosis and criminal justice, where accountability, value-
alignment, and a wide range of ethical considerations are salient (Birch &Creel, 2022;
Falco & Shneiderman, 2021; Hoffman, 2017; Rudin, 2019). Yet, the inscrutability of
DL models (DLMs) is also of epistemological concern in scientific settings, where
explanations and understanding (Räz & Beisbart, 2022; Sullivan, 2019) represent
central epistemic virtues (Khalifa, 2017). Of course, in contexts where deep learning
systems are used to emulate well-understood but time-consuming tasks (e.g., identify-
ing galaxies or denoising data), purely pragmatic considerations such as accuracy of
classification or degree of control are often sufficient or adequate for a given model’s
purpose (Parker, 2020). Moreover, in many such cases, DL outputs can be indepen-
dently verified, thereby rendering opacity epistemically irrelevant (Duede, 2022).
Nevertheless, in many contexts, scientists treat DL outputs themselves as claims about
the target systems upon which the models were trained. Here, it is reasonable to
ask what justifies belief in the reliability of those models. We might feel that, in
such settings, we need explanations for and understanding of the underlying network
processes by which the outputs (claims) are arrived at to serve, in part, as justification
for our belief in them (Creel, 2020). Developing methods for extracting explanations
from deep neural networks to bolster our confidence in their reliability is, of course,
the goal ofmuch of thework in the growing field of explainable AI (XAI). Importantly,
however, progress here has, to date, been quite limited (Ghorbani et al., 2019; Lipton,
2018; Rudin, 2019).
While recent work in the philosophy of science has sought to make sense of how
attempts at andneed for interpretability fit into a broader nexus of practices surrounding
the use ofAI in science (Boge, 2021;Buckner, 2019;Duede, 2022;Räz, 2022; Sullivan,
2019; Zerilli, 2022)1, this paper seeks to understand the principles that underwrite
scientists’ epistemic entitlement to rely on AI in the first place and argues that these
principles are philosophically novel. The question is not whether scientists can be
justified in trusting in the reliability of DLMs. I take it that, in principle, they can and
that the recent scientific literature provides good evidence to that effect. Instead, the
central question of this paper is whether, in general, the epistemic basis for believing
in the reliability of DLMs is something philosophically familiar or, rather, something
philosophically novel.When scientists useDLMs to solve complex scientific problems
that have otherwise been intractable (Senior et al., 2020), bypass costly computations
(Wang et al., 2019), and outperform human experts (themselves included) on routine
but complex tasks (Chen et al., 2014), what justifies their belief in the reliability of their

1 Philosophers have also revived interest in what we can learn about cognition from deep learning models.
For instance, Buckner (2018) argues that the evaluation of the behavior of deep convolutional neural
networks helps us resolve questions going back to Locke concerned with human abilities for abstraction.
Others, however, have expressed skepticism about the legitimacy of looking to neural nets as plausible
models of human cognition at all (Stinson, 2020).
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DLMs? Three philosophically familiar justifications present themselves as plausible
answers, though, as I will show, none can, in fact, bemade to ground epistemic reliance
in deep learning models.
The first seemingly straightforward reason one might have for believing in the relia-
bility of DLMs is through an evaluation of their reliability in the past. Here, the idea
is that a scientist can be justified in believing in the reliability of DL based solely
on what I will call brute inductive considerations. On brute inductive considerations
alone, one could attempt to ground the basis for epistemic reliance on DL either on the
past reliability of DL in general (e.g., on DL’s track record in science) or on the past
reliability of specific deep learning models (e.g., on this or that model’s performance
on out-of-sample data). I explore this justification in Sect. 2, and argue that neither
general nor specific brute inductive considerations can justify belief in the reliability
of DLMs.
It is not uncommon, however, for scientists to refer to and use DL in ways that are
suggestive of other familiar objects of epistemic reliance that do not depend solely on
brute inductive considerations to justify belief in their reliability. Many examples from
the scientific literature in which DL plays a central role look like paradigmatic cases in
which scientists use a scientific instrument to learn something they did not previously
know. This suggests a justification for epistemic dependence on AI’s reliability that
is generally reducible to that of scientific instruments. When, for instance, a scientist
uses a thermometer to check a temperature or a computer to calculate the product
of many large numbers, they, in general, are justified in believing in the reliability
of the results without, for instance, needing to independently verify the product of
the multiplication. However, as I will show, subtle but fundamental distinctions exist
between relying on deep learning models and relying on traditional scientific instru-
ments. These distinctions block a reduction of the justification for believing in the
reliability of DLMs to that of instruments. In particular, these distinctions concern the
nature of the epistemic relations that scientists stand in with respect to the underlying
processes (Goldberg, 2014) that mediate the outputs of their instruments (Goldberg,
2020) and the underlying processes that mediate the output of AI models. As a result,
in Sect. 3 I argue that explaining what justifies belief in the reliability of AI models
cannot be accomplished by appealing to the general form that such justification takes
when scientists can be said to rely on traditional scientific instruments.
Another possibility for justifying belief in the reliability of deep learning models is by
appealing to the justification scientists have for trusting other scientists. After all, this
form of justification is distinct from and not reducible to that of instruments (Goldberg,
2020). Here too, when a scientist asks a domain expert a question concerning that
domain, they, in general, are justified in believing in the reliability of the answer
without, for instance, needing to independently verify the claim (Goldberg, 2014,
2021; Wilholt, 2020).2 So, we might think that the best option for characterizing the
justification for scientific reliance on deep learning models is by thinking of DLMs
as expert agents. Indeed, deep learning is synonymous with artificial intelligence, a
term that evokes something rather like agential status. Moreover, some have already

2 Recent research on the trustworthiness of experts and expert claims notwithstanding (Ioannidis, 2005;
Wilholt, 2020), throughout, I take it that we are presumptively entitled to the belief that experts are following
best practices and are not being dishonest in their claims.

123



491 Page 4 of 20 Synthese (2022) 200 :491

begun theorizing how best to situate human efforts alongside AIs conceived as ‘alien’
collaborators or interlocutors in scientific investigations (Bommasani et al., 2021;
Sourati & Evans, 2021) or to develop a new science dedicated to studying the behavior
(or actions) of AI (Rahwan et al., 2019). Nevertheless, In Sect. 4 I show that an
approach to justifying our belief in the reliability of DL by way of a reduction to that
of other agents also fails. Like with instruments, the failure results from fundamental
distinctions concerning the nature of the epistemic relations that scientists stand inwith
respect to the underlying processes of expert reasoning and the underlying processes
that mediate AI outputs.
As a result, we are left with either accepting that there is no justification for belief
in the reliability of deep learning models beyond pragmatic considerations (which I
deny) or that what can justify belief in their reliability represents a philosophically
novel approach. In Sect. 5, I argue for the latter and conclude that contemplation of
Artificial Intelligence is an occasion and opportunity for exciting, new philosophy of
science.

2 Brute inductive reliability

One way scientists can come to be epistemically entitled to depend on the reliability
of some process is the consistent success of that process in producing accurate results
(Goldman, 1979). Here, the justification for belief in the reliability of a process is,
what I call, brute inductive consideration. How might one establish the reliability of
DL through brute inductive consideration?
One approach would be to evaluate the past success of deep learning in general.
This would involve looking at all instances in which deep learning was deployed
in a scientific setting and evaluating the ratio of its successes to failures. I take it
as straightforwardly uncontroversial that deep learning’s track record, in general, is
insufficient to warrant belief in its reliability. For one thing, we do not even have
access to the (undoubtedly countless) failed attempts to train a reliable model. Yet,
this should not count against the reliability of a particular deep learning model any
more than it should count toward it. Scientists do succeed in training highly successful
deep learning models. In evaluating their accuracy, scientists do not look to the track
record of deep learning in general but, instead, to the accuracy of the specific model
under evaluation.
Evaluation of the accuracy of specific models does involve inductive considerations.
Given a dataset of inputs and outputs, deep learning algorithms train DLMs by min-
imizing a loss function such that the resulting model has a high degree of accuracy
in generating outputs given inputs on test data that were not in the training sample.
Minimization is carried out by iteratively updating the weights on all connections
in the network through back-propagation of errors from prior iterations. In this way,
deep learning algorithms sweep through the space of functions representable by the
network to find a model that best approximates the function that generates the training
data. The model is assumed to be statistically low risk if it performs well on a ran-
domly selected, independent, and identically distributed test set drawn from the same
underlying distribution as the training set. Given that the data used in a test set were
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not seen by the model during training and given that each classification a model makes
during testing counts toward the model’s overall performance, a model that does well
on a large test set can be said to have an excellent track record upon which to base
a brute inductive assessment of its reliability. Finally, a model’s accuracy is expected
to generalize to data that was not used for either training or testing. However, when it
comes to generalization, there are certain assumptions at play concerning the nature
of the underlying distribution that are not always principled.
As a matter of fact, scientists do not yet understand how deep learning models gener-
alize nor the conditions under which they will generalize well rather than poorly Räz
(2022), Zhang et al. (2021). This is due, in part, to the empirical fact that the space
of models representable by a neural network is exceedingly large, and contemporary
deep learning models often return many equally good-looking models (e.g., trained
to the same level of iid generalization). While these equally good-looking models are
often treated as equivalent based on their training and testing domain performance,
they can behave very differently in deployment domains. This form of ‘underspecifi-
cation’ has been shown to lead to instability and poor model behavior when models
are used in practice D’Amour et al. (2020). One reason is that real-world data in many
domains often exhibit fat-tailed distributions (e.g., power-law distributions, Cauchy
distributions) with undefined variance. This means that events that would be very
unlikely (so-called ‘corner cases’) in normally distributed data can be rather common
in distributions with undefined variance. While a model may be highly accurate on a
training and test set that captured many common corner cases, the space of possible
unlikely events drawn from a fat-tailed distribution is significant. This is not, by itself,
a reason to think that deep learning models are, in general, unreliable. Rather, it means
that scientists cannot rely solely onmodel performance on out-of-training-sample data
(e.g., brute inductive considerations) to justify belief in model reliability, as they can-
not be sure that they have not underestimated statistical risk or because their model is
likely underspecified or both.
Discarding underspecified models from sets of equally good-looking models is
frustrated in large part by model opacity. A lack of DL model transparency pre-
vents scientists from assessing the degree to which models encode inductive biases
(Neyshabur et al., 2014) that generalize well to real world data. As a result, scientists
are rarely in a position to assess the conditions under which a given model will fail
to generalize. Traditionally, scientists can evaluate the reliability of their models by
examining not only their accuracy but the degree to which they accurately represent
their targets (Baker, 2021; Giere, 2010; Weisberg, 2012), carry out the purposes for
which they were constructed (Parker, 2020), exemplify properties or principles of
the target that are under evaluation (Frigg, 2010; Frigg & Nguyen, 2016), and so on.
What all of these approaches to evaluation have in common is the necessity of model
‘transparency’. Yet, in general, it is well known that deep learning models are not
transparent.
Philosophers and AI researchers alike have raised concerns about the epistemological
impact of neural network opacity on science and society (the failure of brute inductive
consideration counting as just one such concern). Of course, from a strictly mathe-
matical perspective, deep learning models are fully transparent given that the weight
matrices that mediate the underlying processes that transform inputs to outputs are
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directly observable (Leslie, 2019; Lipton, 2018; Zerilli, 2022). However, in general,
the high-level logic (if there is one) of a fully trained deep learning model cannot
be interpreted in terms of its target system in a way that would allow someone to
understand Räz and Beisbart (2022); Sullivan (2019) or fathom (Zerilli, 2022) how
the individual parts interact and contribute to the network’s outputs. Yet, this level
of transparency would be needed to directly address the concerns outlined above. As
a result, Creel (2020) and Zerilli (2022) have argued persuasively that deep learning
models are epistemically opaque in Humphreys’ sense (Humphreys, 2004) meaning
that a lack of DLM transparency prevents scientists from attending to the epistemi-
cally relevant factors of the model needed to justify their belief in the reliability of
claims made on the basis of a model’s outputs. For Creel, these factors are the net-
work’s algorithmic and structural interpretations (Creel, 2020) which are, for Zerilli,
neither intelligible nor fathomable (Zerilli, 2022). Recently, Duede (2022) has argued
that, while there are contexts in which DLM opacity does not prevent justified scien-
tific knowledge, if the outputs of epistemically opaque models are treated as claims
that, themselves, stand in need of justification that can only be furnished through
an evaluation of the underlying process that mediates model output, then opacity is
straightforwardly problematic.
If the underlying process of a deep learning model is epistemically opaque, then a
scientist cannot directly evaluate the process to form a judgment about whether it is
reliable or not. That does not mean that the underlying process is unreliable. It just
means that our justification for believing in the reliability of the process cannot be
based on brute inductive considerations alone because we are not in a position to
make such an evaluation. This is because, due to epistemic opacity and empirical facts
of the world (e.g., fat-tailedness), we do not stand in the right sort of epistemic relation
to the underlying process to establish the conditions and limits under which we are
and are not justified to believe in its reliability.
Of course, scientists routinely form beliefs about the outputs of processes that they
are justified in believing to be reliable on grounds other than brute inductive consid-
eration. Some of these processes are even entirely or partially epistemically opaque
(Humphreys, 2004). In what follows, I examine the nature of the epistemic relation
that scientists stand in relative to the processes that mediate the outputs of scientific
instruments and processes of that mediate expert judgments and ask whether their
justified belief in the reliability of either can serve to warrant belief in the reliability
of deep learning models.

3 Instrument reliability

It is common to describe deep learning models as scientific instruments. Indeed, many
of their applications share at least surface-level similarities to traditional instruments.
They detect, measure, predict, control —on and on. Obviously, many scientific instru-
ments are reliable, and the reasons scientists have for believing in their reliability are
not based solely on brute inductive considerations. In this section, I consider the ques-
tion of what justifies belief in the reliability of scientific instruments and ask whether
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that justification can also serve to warrant belief in the reliability of deep learning
models.
In what follows, I will use a broader sense of the concept ‘scientific instrument’ than
may immediately come tomind. It is intuitive to think of scientific instruments as phys-
ical objects that one can touch or put to one’s eye (e.g., telescopes and cyclotrons).
Indeed, a broad philosophical and historical literature has focused on the strictly mate-
rial nature of scientific instruments (Baird & Faust, 1990; Galison, 1997; Hacking,
1983; Shapin & Schaffer, 2011). However, the broader sense of scientific instrument
I consider in this section also includes instruments such as statistical techniques for
detecting and teasing out correlations (e.g., regression techniques), computational
instruments for solving or approximating solutions to equations (e.g., simulations),
and even instruments for discovering causal relationships and effects (e.g., randomized
control trials).
Considering a wider sense of the concept reveals a crucial distinction that obtains
between twogeneral categories of instruments. Thefirst arephysicallymediated instru-
ments and the second are theoretically mediated instruments. The distinction concerns
the underlying processes that mediate the manner by which instruments belonging to
each category derive their outputs. Instruments such as themercury thermometer repre-
sent physically mediated instruments. Such instruments work primarily by exploiting
causal, law-like, physical processes in the world. Physically mediated instruments are
distinct from theoretically mediated instruments, such as computational simulation.
Instruments of this latter kind work by carrying out a reliable, theoretically informed
procedure to arrive at an output. As I will show, what justifies our belief in the reli-
ability of physically mediated instruments is distinct from that which justifies our
belief in the reliability of theoretically mediated instruments [a claim echoed in the
broad literature on scientific instruments (Baird, 2004; Charbonneau, 2010; Hacking,
1983)]. So, when it comes to the reliability of scientific instruments, in general, there
exist two distinct epistemic categories to which we appeal in seeking justification for
belief in their reliability.
The distinction I draw between physically and theoretically mediated instruments mir-
rors a distinction drawn by other philosophers of scientific instruments. For instance,
Harré (2010) argues that scientific instruments can be divided into two categories. On
Harré’s understanding, an “instrument” is a device for detecting and measuring natu-
ral phenomena, while an “apparatus” is used to study natural processes by simulating
them. The former are physically mediated, while the latter are theoretically mediated.
Similarly, Baird (2004) argues that there are two fundamental epistemic categories of
scientific instruments: those that create phenomena and those that are models. The for-
mer work reliably in so far as they regularly produce phenomena through their activity
in a way that is not dependent on theoretical considerations (e.g., via causation), while
the latter are broadly similar to theories.
My conceived distinction between physically and theoretically mediated instruments,
while more spartan and general, mostly aligns with Harré’s and Baird’s categories. It is
important, however, to note that many (perhaps most) instruments blur the distinction,
and I am not claiming that bright lines can always be easily drawn. Nevertheless, for
any given instrument, at bottom, the fundamental process that acts tomediate the result
will be either physical or theoretical. Of course, many sophisticated instruments will
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weave physical and theoretical processes together. Yet, even here, justification for the
reliability of the underlying processes that constitute that fabric must be secured, and
the nature of the justification will depend on the type of mediation involved.

3.1 Physically mediated reliability

Physically mediated instruments function by effecting or being affected by (or both)
some causal, law-like, physical process in theworld (Baird, 2004; Charbonneau, 2010;
Goldberg, 2020; Harré, 2010). Consider the Geiger counter. This scientific instrument
is designed to detect ionizing radiation. It functions by instantiating conditions under
which the presence of ionizing radiation will cause an electrical charge to form and
be both conducted and detected by the device. Specifically, the design of the Geiger
counter exploits what is known as the Townsend avalanche phenomenon. Here, an
electric field applied across an inert gas creates conditions under which an ionized
particle passing through the fieldwill liberate an electronwhich, in turn, liberatesmore
electrons, on and on in a cascading event generative of a detectable and measurable
charge. So long as the field over the inert gas is of high enough voltage, an ion passing
through will cause a charge to form as a matter of physical necessity. This specific
physical necessity is exploited in the design and use of the Geiger counter. Reliably,
just so long as physical conditions are satisfied, a radioactive particle will cause a
charge to form within a Geiger–Müller tube. This exploitative approach generalizes
to all physically mediated instruments such that all are designed and used to exploit
some causal, physical necessity, or necessities, and this exploitation is the key to their
reliability.
Our justification for believing in the reliability of such instruments, then, is based on
our having good reasons to believe that a physical process connects the instrument’s
behavior to the world in such a way that the latter causes the former. In the vast
majority of cases, physically mediated instruments are designed, from the start, to
exploit well understood causal relations or pathways. Yet, these relations or pathways
need not always be based uponwell-understood, theorized, or hypothesized principles.
What is required is that we have good reason to believe that reliable, spatiotemporally
continuous processes connect the behavior of an instrument with an event of interest.
Consider that, for quite some time, scientists’ use of a mercury thermometer was
based on observed and precise correlations between the expansion of mercury and
temperature. The use of various types of lenses (e.g., biconvex and biconcave) had
been widespread for hundreds of years [if not millennia (Sines & Sakellarakis, 1987)]
before the principles of optics that govern their light focusing and dispersing capacities
were understood. For instance, seventeenth century astronomers did not know how the
lenses in their telescopes magnified, were not sure how to improve the reliability of
their lenses, and all available knowledge of optics was insufficient to account for key
processes such as refraction. Yet, Galileowas able to refine his telescopes continuously
(Zik & Hon, 2017). Similarly, for centuries before anything like modern chemistry or
specific knowledge of pH, the use of litmus (by, for instance, alchemists) to reliably
evaluate the acidity of substances was commonplace.
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For seventeenth century astronomers, the underlying processes that mediated the
behaviors of their telescopeswere epistemically opaque in the sense that optical princi-
ples that ensure the reliability of their instruments were not directly evaluable.When it
comes to physically mediated instruments, even in cases where the underlying process
central to the instrument’s reliability is epistemically opaque (e.g., early telescopes),
our belief in the reliability of the process is still justifiable. Physically mediated instru-
ments perform reliably partly because their behavior does not rely on theory or, as
Baird puts it, their “action has been separated from human agency and built into the
reliable behavior of an artifact.” (Baird (2004), p. 12). Where physically mediated
instruments are concerned, once the limits and conditions under which the instru-
ments function with consistency have been established (either by subjecting them to
careful tests via experimentation or known a priori from theory), if the instrument is
used within these limits and under the right conditions, then the process of obtaining
reliable results is, as it were, out of our hands—mercury will always expand at the
same rate when heated; a charge will always form in an electrified field over an inert
gas when exposed to ionizing radiation.
Certainly, there are causal processes at play when a deep learning model is in use. The
most obvious is the underlying physical processes unfolding within a digital computer.
There is a sense in which the flow of electrons through logic gates causes the algorithm
to execute. However, at bottom, the process that mediates the behavior of a DLM is the
logic of the learned algorithm itself. No direct causal connection between the world
and the DLMs mediates the model’s output of a given value.
If we consider the formal representation of a trained DLM, we can see that the entire
model (regardless of howmany layers there are) is expressible as a single, highly non-
linear, nested function. So, the output of a deep learning model is merely a function of
the input, where the function just is the model. Scientists do not need to rely on some
particular physical process when they believe in the reliability of a DLM. Of course,
they need to rely on a computer to instantiate the model. It would not be possible in
any reasonable amount of time to calculate an output for a model of any significant
size. So, in some sense, the model depends on the computer, but not for its reliability.
As a result, if our belief in the reliability of DLMs is justified in the same way as that
of a scientific instrument, then it is not of the physically mediated variety.

3.2 Theoretically mediated reliability

Theoretically mediated instruments function by carrying out a theoretically informed,
algorithmic or heuristic procedural process for accomplishing somegoal or completing
some task. They are reliable insofar as the underlying procedural process is reliable.
Computational simulation is a good example of a theoretically mediated scientific
instrument that bears some resemblance to deep learning in the philosophical literature.
It is typical for real-world systems that admit of spatial or stochastic dynamics
(e.g., gravitationally bound systems of masses, signaling systems, molecular bio-
logical systems, economies—on and on) to be represented by mechanistic models
(e.g., differential mathematical equations). Solutions to the equations that describe
such models might represent system states evolved from particular initial conditions.
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While such mathematical models admit of no analytic solutions, numerically approx-
imate solutions can often be found cheaply by means of computational simulations.
Computational simulation functions to solve such models by instantiating algorith-
mic procedural processes designed for operationalizing the mathematical methods of
numerical analysis, such as discretization and numerical integration (e.g., Riemannian
summation).
Unlike physically mediated instruments, for theoretically mediated instruments like
computational simulation to function, we must know the underlying procedural
process, how it works, and how to implement it in the instrument. Moreover, our jus-
tification for believing that the procedural process (e.g., algorithm) is reliable requires
knowledge of the principles that the procedure operationalizes (e.g., discretization,
numerical integration, real-root isolation) and under what conditions these principles
apply (e.g., continuous, polynomial functions). In order to ensure that the process can
reliably succeed in carrying out its task, specific criteria must be met concerning the
quality of the implementation, data structures of inputs, the appropriateness of the
application, and the soundness of the underlying assumptions. These qualities serve
to condition and constrain the reliability of any given procedure for estimating effects.
When Humphreys argued that computational simulation was philosophically novel
(Humphreys, 2009), he joined (Oreskes et al., 1994) in worrying that the underly-
ing procedural process for the numerical approximation of solutions to the equations
under simulation cannot, in practice, be checked, verified, or validated by the human
scientist even though the solution, itself, is relied upon to license claims about its
target system.3 Here, Humphreys’ worry is expressible in terms of Creel’s ‘run trans-
parency,’ which is knowledge of the simulation procedure as it was actually executed
on this or that occasion (including the physical processes in the hardware) (Creel,
2020). Roman Frigg and Julian Reiss argued (Frigg & Reiss, 2009) that, in the case
of simulation, the opacity concern was not sufficient to warrant new epistemology
because both the model (e.g., system of equations) under simulation and the algorith-
mic procedure for resolving its solution space are still fully interpretable. Moreover,
during simulation, the semantics of themodel arewell articulated and are not lost in the
procedure. I argue that, so long as we have good, epistemic justification for the system
of equations, are reasonably certain that they have been accurately represented in the
computer, and have principled, epistemic justification for belief in the reliability of the
procedural processes used in numerical approximation (derived from well understood
principles in the applied mathematical sciences), then the fact that the numerical con-
vergence to a solution to the model cannot be checked in practice seems epistemically
acceptable. This is because the procedural processes that mediate the output are not,
in fact, epistemically opaque. They are both fully interrogable and justifiable on the
basis of accepted, well-established principles. Aspects of this claim are either implicit

3 In fact, many philosophers have argued that simulation requires special philosophical attention (Galison,
1996; Humphreys, 2004, 2009; Oreskes et al., 1994; Rohrlich, 1990; Winsberg, 2001, 2003). In general, I
am sympathetic to the view that computational simulation extends the philosophical literature in genuinely
fruitful ways and that consideration of simulation deepens our understanding of scientific methodology.
It has, nevertheless, proved difficult to articulate precisely in what ways computational simulations give
rise to specific philosophical concerns that are qualitatively distinct from those already native to the more
general literature on models, experiments, or computation.
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or explicit in Parker (2008a) and (2008b), Winsberg (2010) and have been used to
motivate positive views concerning computational simulation’s status as good science
(Norton & Suppe, 2001). Moreover, digital computers are well understood, and we
have sufficient justification for believing they are reliable under the right conditions
and within certain limits (none of which are violated in executing a simulation).
Yet, we need not even concern ourselves with digital computers. If we focus just on
the procedural processes that mediate the output of a computational simulation, we
see that, though such computations might be tedious, slow, and subject to operational
error, they can, in principle, be carried out by hand. So, the underlying processes
that mediate computational simulation and require justification are of the theoretically
mediated type. Just so long as the various algorithmic processes are carried out cor-
rectly and without error, a manual computation would be as accurate and reliable as
any other. As a result, when evaluating the reliability of a theoreticallymediated instru-
ment like computational simulation, we need not concern ourselves (much) with the
physical processes needed to carry out the procedures (e.g., pen and paper, whiteboard,
calculator, computer, cloud).
All aspects of theory mediated instruments are designed, implemented, and oper-
ationalized from known or hypothesized principles. Recall that, with physically
mediated instruments, just so long as the conditions are right, the underlying pro-
cess that mediates the instrument’s reliability is out of our hands. Scientists do not
design the physical processes. Rather, they, as it were, discover them. With theory
mediated instruments, nothing is out of our hands. For instance, in the simulation
case, it is practically impossible to find solutions to the equations that represent a dou-
ble pendulum without executing the correct, mathematically justified procedures for
numerical approximation. We would never be justified in believing in the reliability
of a brute force procedure that guessed random states of the system, as this procedural
process is unlikely to ever guess the correct solution, and, even if it did, we would
never be in a position to know that it had.
It should strike the reader as at least intuitive to think that deep learning models are
highly similar to theoretically mediated instruments. After all, what is executed in
a DLM can be formalized as a procedural process that maps inputs to outputs. So,
it seems reasonable to suspect that deep learning models are theoretically mediated
instruments. It is, for this reason, that I have focused more closely on this class of
instrument than the physically mediated variety.
Recall that, to justify our belief in the reliability of a theoreticallymediated instrument,
we need to know what the underlying procedural process is, how it works, and how
to implement it in the instrument. Here, everything is in order. We know what the
procedural process is (it is the mathematically transparent function), we know how it
works (it passes a weighted sum of outputs from layer to layer), and we know how to
implement it in a computer (using the relevant software). However, if the DLM is a
theoreticallymediated instrument, then, in order to justify our belief in the reliability of
its outputs, we must also know what principles the procedural process operationalizes
and under what conditions these principles apply. Moreover, we must know when
the process is appropriate for use and be in a position to justify the soundness of the
assumptions that underlie the process and its applications. That is, we need more than
just run transparency, we need Creel’s other two forms of transparency—algorithmic
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transparency (high-level, logical rules instantiated in the procedure) and structural
transparency (how the high-level, logical rules are realized in code) (Creel, 2020).
Yet, as we saw in Sect. 2, DLMs are epistemically opaque, lacking both algorithmic
and structural transparency (Duede, 2022; Räz, 2022; Zerilli, 2022).
So, in order to justify belief in the reliability of a deep learning model conceived as
theoretically mediated, scientists would need to establish and agree upon methods for
the evaluation of the model itself that allows for justifying the principles (e.g., the
high-level, logical rules) which the known procedural process operationalizes. As we
saw in Sect. 2, measures of accuracy and precision do not get us to justified belief
in reliability because they depend on brute inductive considerations that break down
under conditions of epistemic opacity that are not physically mediated. In order to
justify the global, high-level logical rules instantiated by the model, those rules would
need to be known. However, DLMs are not interpretable in this way, so the initial
worries are not directly resolvable.
Before conceding, one might, instead, argue that our justification for believing in the
reliability of DLMs only looks like it fails to reduce to that of theoretically driven
instruments because of the epistemic opacity of the procedure. After all, if it were
possible to assign meaningful, global, high-level logical rules to the weight matrices
that specify a givenDLM,wewould be in a positionwhere principles for the evaluation
of learned procedures would be plausibly attainable. Such a situation would allow a
straightforward reduction of the epistemic status of DLMs to that of theoretically
mediated instruments, since the high-level logic of the model could be assessed in the
same way as the high-level logic of other theoretically mediated instruments. I take
it that this is the standard view that motivates much of the ongoing interpretability
research. The idea driving that agenda is that DLMs are, theoretically, interpretable in
such a way as to reveal the underlying procedural principles that govern their outcome
behaviors. This approach turns on the idea that the network encodes an in-principle-
interpretable algorithm which, in turn, implies that we evaluate the principles that
govern it.
The problem that this approach faces is that it is merely an assertion that, at this time,
comes with no good reason to believe its central premise—namely, that the model
structurally encodes (in Creel’s sense) global, high-level, logical rules (e.g., a the-
ory) that can be understood. The recent research on interpretability provides plenty of
reason to believe that DLMs do not (Leavitt & Morcos, 2020) encode such models.
Current interpretability and explainability research focuses on ‘local understanding’ or
‘local interpretability’ (as opposed to global understanding). ‘Local approaches’ such
as gradient saliency and saliency maps help researchers understand how the model
responds to particular inputs and how the model’s behavior changes with movement
in the input space. Moreover, not only do these approaches not yield global under-
standing (Räz, 2022), the very approaches, themselves, are theoretically suspect (Nie
et al., 2018), demonstrably fragile (Ghorbani et al., 2019), and may not be suitable
for tasks that require knowledge of global, high-level logic, such as identifying out-
liers, explaining the relationship between inputs and outputs, or debugging a model
(Adebayo et al., 2018). Finally, even when local approaches reliably work as intended,
they cannot give us a global understanding of the model’s high-level, logical rules, a
point acknowledged by Sullivan (2019) and, more recently, Räz and Beisbart (2022).
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Issues of this kind have led some to rethink ‘local’ interpretability. For instance, in a
prominent piece, Cynthia Rudin has urged that scientists avoid epistemically opaque
systems in high-stakes settings (Rudin, 2019).
Consider, then, that current approaches to interpretability do not give us reason
to believe that DLMs encode interpretable, high-level, logical rules because these
approaches do not even aim at revealing them. Instead, they aim to help researchers
understand how a particular model will respond to specific inputs. Yet, this is a long
way from delivering the kind of knowledge scientists need concerning the principles
the model’s procedural processes operationalize and under what conditions and limits
those principles apply and fail. Given this, it is clear that our justification for trusting
in the reliability of deep learning models cannot be reduced to the justification we
have for believing in the reliability of theoretically mediated instruments in general.
Importantly, this is not to deny that interpretability and explainability approaches
cannot give us justification for believing in the reliability of DLM. It is just that the
justification they give us is not of the same form as the justification we have for the
reliability of theoretically mediated instruments. It is also not the justification we
have for physically mediated instruments. I will, however, return to the discussion of
interpretability techniques in Sect. 5 when I consider whether they represent a novel
approach to justifying reliability requiring novel philosophy of science. For now, I
turn to evaluate whether deep learning models can be considered reliable on the same
grounds as the reliability of scientific experts.

4 Expert reliability

While it is common to describe deep learning as an instrument, it has always beenmore
common to describe it in ways that are suggestive of agential status. The monikers
Deep Learning andArtificial Intelligence are certainly suggestive of agency. Scientists
and scholars routinely refer to deep learning models operating in scientific settings
or AI-infused applications as expert agents (Bommasani et al., 2021; Branch et al.,
2021; Sourati & Evans, 2021; Stevens et al., 2020). Yet, this is not new. The vision put
forward by the 1950s and 60s cyberneticists like William Ashby (1961) and Douglas
Englebart (1962) was of AI conceived as expert systems that encode, complement,
augment, and amplify human intelligence and capacities. Today, deep learning, con-
ceived as AI, increasingly acts as an autonomous participant in collective epistemic
tasks. In such ‘AI-in-the-loop’ contexts, scientists relate to AIs as scientific agents
(Rahwan et al., 2019) and situate them within scientific groups. More ambitiously
still, completely autonomous, AI-operated, ‘self-driving’ laboratories are not merely
imagined but constitute a national strategic priority for science (Stevens et al., 2020).
If our justification for belief in the reliability of deep learningmodels is reducible to that
of expert scientists, then what justifies our belief in the reliability of experts? Expert
reliability is an enormously complicated area of philosophical and social scientific
interest. A significant reason why expert reliability is unlike instrument reliability is
that, when it comes to experts, their reliability is parasitic on their having good reasons
for the claims theymake.Aswe have seen, instrument reliability depends on exploiting
causal, physical processes or carrying out reliable, theoretically mediated, procedural
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processes. For experts, making consistently reliable claims in accordance with good
reasons (and sound reasoning) is a hallmark of expertise. Nevertheless, not all reasons
are epistemic, so issues of trust and trustworthiness become central to belief in the
reliability of experts.
It is quite common for scientists and AI researchers to talk about trust and trustworthi-
ness concerning AI systems. Indeed, the U.S. National Science Foundation recently
announced4 its intention to fund several institutes focused on issues pertaining to indi-
vidual and community level trust in AI systems. Traditionally, however, trust has been
taken to be an attitude and relation that can only be directed toward another agent
and plays out in various efforts of cooperation and social relationships. It has been
noted that, because trust involves believing that the agent you are trusting has your
best interests at heart and is motivated to act accordingly, deep learning models (AI’s)
cannot stand in the trust relation (Hatherley, 2020). Moreover, it has been argued
that, while deep learning can be relied on, it cannot be trusted because it cannot have
emotive states and cannot be held responsible for its ‘actions’ (e.g., outputs) (Ryan,
2020).5 While this conception of trust has been well theorized in moral, social, and
political settings (Baier, 1986; Baker, 1987; Hardin, 1996; Holton, 1994; Jones, 1996,
2012), it has also been noted that without trust among scientists, contemporary sci-
ence would not be possible (Fricker, 2006; Frost-Arnold, 2013; Gerken, 2015). One
critical pathway through which trust enters into general epistemic concerns is by way
of the knowledge we might acquire through testimony (Faulkner, 2007; Hardwig,
1985, 1991; Hieronymi, 2008; Hinchman, 2005; Keren, 2014; Lackey, 2010; Nickel,
2012). Here, our justification for believing what we have been told depends, in part,
on whether we have good reasons to trust the speaker.
In scientific settings, however, we see that our justification for belief in what another
expert testifies to is logically separable from trust, as the justification for the claim
depends on the evidence in support of it, not on the trustworthiness of the speaker
(Elgin, 2017; Goldberg, 2014, 2021; Meeker, 2004). Expert reliability, then, is sepa-
rable from issues of trust and trustworthiness as, at bottom, what justifies belief in the
reliability of an expert is the reliability of the underlying process that mediates what
claims the expert comes to believe and testify to. In this, I follow Goldberg (2014),
(2021) and argue that one is defeasibly justified in believing in the reliability of an
expert, just so long as the expert’s claims are mediated by underlying processes that
‘constitute expert judgment within [their] domain of expertise’. The justification is
defeasible because the expert can, among other things, be untrustworthy. In this way,
expert reliability is less about the individual agent andmore about the process of expert
reasoning that results in the claim.
When a scientific expert makes a claim, they are responsible for providing evidence
for and reasons that support the claim. When other scientists evaluate the reliability
of the claim, they evaluate not just the evidence, but also the expert’s reasoning in
light of the evidence. The evidence and expert reasoning in light of it represent the
first-order reasons for the claim. So, our justification for belief in the reliability of

4 See https://www.nsf.gov/pubs/2022/nsf22502/nsf22502.htm.
5 See, however, Nguyen (2020) who argues that trust is an unquestioning attitude which can be taken with
respect to, among other things, ropes.
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an expert claim depends on whether we have access to good first-order reasons for
the claim. Scientists are able to evaluate first-order reasons because, in general, the
evidence and reasoning process of an expert are made explicit with the claim. Of
course, what counts as evidence and epistemically acceptable reasoning for specific
scientific claims is context- and domain-dependent.
However, if justifying belief in the reliability of expert claims in science required
evaluating all the first-order reasons in support of those claims, nothing would ever
get done. This is why science requires a degree of epistemic trust (Fricker, 2006;
Frost-Arnold, 2013; Gerken, 2015) and reliance (Wilholt, 2020). At bottom, however,
what that reliance ultimately depends on is a justified belief that there are, in fact, good
first-order reasons that support the reliability of the claim. An example is helpful here.
Suppose that amathematician tells a physicist that some theorem is true. The physicist,
not expert enough in this area of mathematics, cannot directly evaluate the proof of
the theorem for themselves. Nevertheless, the physicist may still have good (justified)
reasons to believe that the theorem is true. These higher-order reasons might include
the fact that the mathematician is well regarded, is the author of the proof, and that
the proof has been peer-reviewed. All of these higher-order reasons contribute to the
physicist’s justification for the belief that goodfirst-order reasons support the reliability
of the claim that the theorem is true. In science, appeals to the authority of others (e.g.,
reliance on higher-order reasons) like this is both ubiquitous and necessary. No one
can establish, for themselves, the necessary first-order reasons for all of the claims
that constitute the body of scientific knowledge. Importantly, however, this is only
acceptable so long as the body of scientific claims is, in fact, supported by evidence
of the first-order variety. As John Hardwig put it, “[t]he chain of appeals to authority
must end somewhere, and, if the whole chain of appeals is to be epistemically sound,
it must end with someone who possesses the necessary evidence, since truth claims
cannot be established by an appeal to authority, nor by investigating what other people
believe about them.” (Hardwig, 1985, p. 337) The brute inductive consideration of the
mathematician’s reputation cannot justify belief in the reliability of the claim that the
theorem is true. That justification can be secured only through a direct evaluation of
the first-order reasons for its truth—the proof.
In order to model our trust in the reliability of deep learning models on our trust in the
reliability of expert agents, we need to show that either DLMs have good first-order
reasons for their outputs that we can evaluate, or we need to show that we have good
higher-order reasons for believing that DLMs possess good first-order reasons. To
demonstrate that our trust in the reliability of DLMs cannot be reduced to a version of
our trust in experts, it would be enough to show that we cannot have good reasons for
believing that DLMs have good reasons for their outputs. The most straightforward
way to do this is to simply deny that deep learning models are the kinds of things that
have reasons. However, this argument is harder to make than it seems. Yet, it is also
possible to show that the reduction is blocked without denying that DLMs can have
reasons for their claims. Here, it is sufficient to show that, even if they have reasons,
those reasons are not evaluable by others.
So, let us posit that deep learning models have reasons for their claims (e.g., outputs).
However, due to epistemic opacity, these reasons cannot be directly evaluated by
others. As a result, our route to first-order reasons for belief in the reliability of the
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model’s outputs is blocked, as we cannot say whether those reasons are epistemically
acceptable. We might have higher-order reasons, but, as noted above, this is only
epistemically acceptable so long as the body of scientific claims is, in fact, supported
by good evidence of the first-order variety.
In Sect. 3.2,we considered the efficacy of recent interpretability techniques for ground-
ing our justification in the reliability of DLMs in that of theoretically mediated
instruments. We saw that this fails as these techniques are ‘local’ and cannot supply
a global understanding of the model, which blocks our ability to evaluate the condi-
tions and limits of its applicability. However, one might think that such techniques are
applicable here. After all, if we assume that the model has reasons for its outputs, and
if we want to evaluate the first-order reasons for a particular output given an input,
then there seems to be prima facie reason to believe that ‘local’ saliency methods
are applicable here. The idea is that, given an input, we can use local explainability
techniques to explain why the model made the output that it did.
There are two reasons why this approach fails. The first is that these techniques do
not give us access to a DLM’s ‘reasons’. Rather, they give us local, linear estimates
of how the model will behave given changes to values in the input space. From this,
we must infer what the model is responding to. This is not at all the kind of thing
scientists do when evaluating the claims of other experts. When it comes to evaluating
the epistemic credentials of an expert’s first-order reasons, we do not need to infer what
those reasons are from estimates of how the expert would behave if presented with a
different question. Second, recent work in interpretability (Adebayo et al., 2018) has
shown that these approaches lack principles that determine the conditions under which
the approaches themselves are reliable (Räz & Beisbart, 2022). Importantly, this is not
to deny that these approaches can give us access to justified belief in the reliability of
DLMs. Rather, that the access they give us is not of the same variety as we have when
evaluating the reliability of experts.

5 Concluding discussion and new directions

Deep learning has become increasingly central to science, primarily due to its capacity
to quickly, efficiently, and accurately predict and classify phenomena of scientific
interest. This paper aimed to show that when scientists believe in the reliability of the
predictions and classifications they get from DLMs, that belief cannot be modeled on
the reliability of mere scientific instruments, nor can it be modeled on the reliability
of other experts. The question of this paper is not whether scientists can be justified in
trusting in the reliability of DLMs. I take it that they can. Instead, this paper has argued
that the epistemic categories of justification for belief in the reliability of experts and
instruments are distinct and that belief in the reliability of DLMs cannot be reduced
to either.
One might conclude from the preceding arguments that there is no justification for
belief in the reliability of deep learning models. This conclusion strikes me as overly
pessimistic and fails to be sensitive to the astonishing scientific capabilities and break-
throughs that deep learning has recently enabled. In Sects. 3 and 4, I discussed
techniques for understanding the behavior of deep learning models. While these tech-
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niques are not yet robust, are post-hoc, and often fail to secure the kind of justification
we need, they represent a novel class of approaches to securing justification that is
still nascent but promising. A detailed treatment of recent advances in this area is well
beyond the scope of this paper. Nevertheless, what these advances have in common
is that they, in general, deploy the methods of scientific observation and experimen-
tation that have traditionally been used to understand target systems of interest in the
service of justification for belief in the reliability of novel methods that tell us about
the world.6

As a result, the widespread use and reliance on deep learning models in science has
opened up a qualitatively new epistemic category of reliability, and this represents an
opportunity for genuinely novel philosophyof science.RecentworkRäz (2022) linking
explanation of deep learning models to statistical explanation (Salmon, 1971), as well
as work that carefully demarcates the robustly justifiable role that deep learning can
play in discovery (Duede, 2022), represent promising new epistemological avenues
for the philosophy of science to explore.
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